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Abstract 
Several classes of mesh motion algorithms are presented for the remap phase of unstructured 

mesh ALE codes. The methods range from local shape optimization procedures to more complex 
variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary 
for the Kull code. 

1 Local shape optimization 

Three different weighting schemes are described in this section to optimize the mesh configuration 
based on simple locally computed geometric shape functions. The first scheme attempts to adjust 
the vertex angles formed by the tetrahedral sub-zonal side elements to an optimal equi-angular 
state. The vertex solid angle (&) is defined as the surface area of the tetrahedral side element T 
attached to the vertex ti and formed by projecting each point on the face not containing ti to the 
unit sphere centered on ti. An explicit formula for 130 at to can be written in terms of the volume 
and edgelengths of T (Liu and Joe 1994) 
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where the volume is computed from the coordinates of each of the four vertices 2i at ti 
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and eij E are the edgelengths between vertices ti and t j  with tij = I t j  - til. The tetrahedron 
edges attached to t o  are defined by the vectors connecting t o  to the face centers (t l ,  tal), the zone 
center ( t 2 ,  &2),  and the opposite nodes ( t 3 ,  eo3) of each of the M sub-zonal side elements of the 
cell. The complete list of edges forming the tetrahedron are 

-# 

(1.3) 
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&I = Z F  - 2 0 ,  f?Oz = z Z  -xO, e03 == ZN1 - 20, 
-# + 

Z'2 = ZZ - zF, -ti3 = z N ~  - zF, e23 = z N ~  - zZ. (1.4) 
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By assigning an equilibrium angle appropriate for a regular tetrahedron, - 3 = 3 cosp1 (1/3) - TI-, a 
weight factor is defined for the mth side element as W, = 8 - to drive the nodal motion 
between pseudo-times tn and tn+’ as 

In 2D, 

(1.6) 

and W, = 7r/3 - 
A similar mesh calculation can be performed using the radius (or aspect) ratio defined by 

p = q / r C ,  where ri and T - ~  are the inscribed and circumscribed radii respectively. A convenient 
formula for computing p is 

72 V 2  
P =  (1.8) CLO Sid(.. + P + Y)b + P - r)(a + Y - P>(P + Y - a )  

where a = !01!23, P = e02f13, and y = t03l12 are products of the lengths of opposite edges of T, 
and si are the areas of the four faces 

1 
(1.9) s .  - - - d ( a i  + bi + ci)(ai + bi - ci)(ui + ci - bi)(bi + ci - ai ) ,  

with magnitudes of the three unique planar edge lengths making up the faces ai, bi and ci. Setting 
W, = prn in (1.5) effectively drives the mesh to equal aspect ratio zoning. In 2D, the corresponding 
shape parameter can be written 

(1.10) (e02 -k e03 - e23)(e23 -k e03 - e02)(!23 + e02 - [OS) 

e02e03e23 
o =  

A more generic and fundamental representation of shape parameters is afforded by composing 
the Jacobian matrix of all node positions attached directly to t o  (Freitag and Knupp 1999). Defining 
SZrn,, = ?m,k -20 as the difference between the position of the kth neighbor node of the mth element 
and the position of the center node, the Jacobian matrix of the mth element is written in terms of 
the relative vector components 

(1.11) 

For 3D hexagonal cells or tetrahedral sub-zonal elements, 1 5 k 5 3, and if an element is inverted 
or tangled, the determinant of the Jacobian matrix is DetlAml 5 0. Defining the Frobenius norm 

IAl = brace (ATA)]’”, (1.12) 



a variety of smoothness objective shape functions f(A,(?)) can be defined as criteria or weights 
for optimizing the mesh shape: f(Am(Z)) = DetlAmI2, DetlAm(21A;112, IAm12/DetlAmI, 
interpreted as the sum of the square of the attached edge-lengths, the local cell volume, the sum 
of attached face areas squared, and the aspect ratio, respectively. The displacement vector in this 
case is defined by 

(1.13) 

where W, = f(A,(Z)). 

2 Tetrahedral finite element smoothing 

The focus in this section is on Laplacian smoothing on a tetrahedral finite element mesh which 
satisfies the condition of extremum in the variation integral 

I = - d z 3 W ( x ) v i f V y  
2 'S (2.14) 

where f is associated with the coordinates (z, y, z ) ,  and W ( x )  is an arbitrary weight function. 
Since polyhedral cells can be constructed out of more basic tetrahedral element, this approach is 
also relevant for more arbitrary polyhedral meshes. 

The finite element approach presented here is based on the shape function of the sub-zonal 
tetrahedron (or triangle in 2 D )  side element composing of two nodes along an  edge of the cell, one 
of the face centers, and the zone center. Using the notation (t, 7, () -+ ( r ,  s, t) for the generalized 
coordinates, the shape functions for an orthogonal tetrahedral element is defined by 

N I  = r ,  N2 = s ,  N3 = t, and N4 = 1 - r - s - t, (2.15) 

where node N4 corresponds to the pivotal node to in the notation of section 31. Using the notation 
BsN 3 aN/as ,  the shape function gradients take the form 

which reduces to 

(2.17) 

(2.18) 

(2.19) 
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and 

(2.20) 

Ai are the areas of the opposite face (to the node i) triangles 

A = - D e t ( :  1 zi 
1 x3 Y3 

2 (2.21) 

and J is the determinant of the Jacobian matrix related to the tetrahedral volume V 

(2.22) 

Equations (2.17) - (2.19) can be written collectively in compact form as 

2A, - A, -t 

- ON,=- - 
J 3V’ (2.23) 

where A, is inward pointing (towards the cell center). 
Since an arbitrary function f is represented in a finite element approach as f = E, f,N,, where 

fa and N,  are the values of f and the shape function at the a t h  grid point, the gradient of f can 
be expanded as 

Gf = f,eN,. (2.24) 

Associating f with the Coordinates f z ( x ,  y ,  z )  yields for the coordinates 

f 
f 
f 

3 x = rxi  + sx2 + tx3 + (1 - r - s - t ) x4 ,  
E Y = r y i  + sy2 + t y3  + (1 - r - s - t ) y4 ,  
E = ~ z i  + sz2 + tz3 + (1 - r - s - t),z4. 

Substituting (2.24) into the variational integral (2.14), yields 

where 
A,p = /dx3WViNaViNp = dx - A , .  Ap, J 37+ + 

(2.25) 
(2.26) 
(2.27) 

(2.28) 

(2.29) 

is the matrix composed of the inner vector products of opposite face areas (2.23). However, one 
drawback of this form is the tendency to drive the mesh to a state of orthogonal faces since 
A, Ap = 0 represents the extremum. A particular manifestation of this problem appears in 
spherically converging meshes. In this case the mesh tends to concentrate radially towards the 
middle domains at which r - Ar/A8, where the arc length s = rA0 is comparable to the radial 
distance Ar  between nodes, and the side tetrahedral elements are naturally formed with minimal 
aspect ratios. This can be compensated for to some extent by adding an additional term to (2.28) 

+ +  
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to drive the system to a competing equilibrium state. This is acheived easily by considering the 
sum of the square of the edgelengths, and rewriting (2.28) as 

I = - 1 fff fp 1 dx3WViNaViNp + W!,V 2 113 , 
ff,P ff 

(2.30) 

where E is a coupling constant, 
for dimensional reasons. A useful identity 

are the edgelengths squared, and the volume V113 is introduced 

CI ,B 

where 6c is the Kronecker symbol, can be substituted in (2.30) to yield 

where now 
. Ap + ~ w V ' I ~ ( 4 6 , p  - I), 

(2.31) 

(2.32) 

(2.33) 

and for a single element, ignoring overall constants 

W 
Affp = - J (Aa . AB + ~V'I~(46,p - 1)) . (2.34) 

A similar calculation can be carried out in two dimensions to yield 

where gff are the inward pointing opposite edge lengths, and A is the area of the triangular cell. 
Forcing the variational integral to  extremum 

and introducing WB for anisotropic weighting yields 

(2.36) 

(2.37) 

(2.38) 

for the contribution from a single element ! to the modified coordinates of the a t h  node. 



6 
4 

3 Generalized Laplacian smoothing on polyhedral meshes 

The variational approach discussed in section 52 is extended here to a weighted Winslow-Crowley 
(Crowley 1962; Winslow 1963) form on a single finite element and generalized to arbitrary polyhe- 
drals. Using a general coordinate transformation between reference coordinates and Cartesian 
coordinates zi with xi = fi(&),  the variation integral (2.14) becomes (Tipton 1994) 

where the coordinate transformation is implicit in conventional tensor notation 

Variation of (3.41), 61 = 0, gives 

and neglecting metric derivatives results in the Winslow-Crowley formula 

assuming also that the weight factor is set to the Jacobian W = J .  
In finite element form, the action is written 

where the diffusion matrix is defined 

and the new coordinates are computed by 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

as in $2. 
The difference between the tetrahedral results of the previous section and those discussed here 

lies primarily in the definition of the gradients used in (3.46). The notion of generalized coordinate 



transformations is applicable locally to a single (quadrilateral or hexagonal) element, though it may 
not necessarily be parametrically continuous across different elements. For a single element, the 
metric tensor representing the coordinate transformation is written as 

(3.48) 

where 

is the symmetric inverse of (3.49), with independent components 

--+--++- a x a x  dydy  azaz 
at at at at % a t ’  911 = 

and Jacobian determinant 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

The Winslow-Crowley formula is readily generalized to an individual element and to account 
for metric differences across elements by including the metric derivatives and discretizing the full 
variational result (3.43) in place of (3.44). Discretizing (3.43), summing over all elements e, and 
treating the weight and metric variations in an explicit first order fashion gives 

I 1 e 

4 e  
+ - [ (g~1JW)i+112,j+112,k f i + l , j + l , k  + (9G1Jw)? Z- 1/2,j- 1/2,k fz- 1 ,j- l ,k  
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for the coordinates of the central pivotal node. Also, 

is the normalization factor, and the spatial indices on the terms (gz;lJW)t indicate the edge align- 
ment within element f from which the metric components, Jacobian, and weight functions are 
derived. 

The physical interpretation of the components of gij implicit in the definition of (g;') is under- 
stood as scalar products of different permutations of any two edge vectors centered on an arbitrary 
pivotal node. In particular, gij on node a is associated with the scalar product of the two edge- 
lengths denoted by (i, j )  belonging to the same discrete element f, gij = 6Z(i)  . 6 2 ( j ) .  With this 
notation, the tensor components of (3.49) are written in the form 

with an implied summation convention over identical covariant and contravariant indices. 
Although derived assuming hexagonally shaped cells, the identification of the metric tensor 

with local edge products is easily extended to arbitrary polyhedrals by accounting for all possible 
permutations of edge pairings. For example, considering differential changes in nodal positions (as 
apposed to absolute coordinate positions), the node-centered net displacement function between 



(69.1) 
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and the various weights appearing in (3.66) - (3.68) are tied to local cell attributes. In particular, 
W = VW*E"e, where V is the cell (or tetrahedral sub-element) volume, E is the edgelength, and 
w, and we are arbitrary exponents. 

4 Post-motion filters 

Several constraints are placed on the final mesh displacement vector once it's computed by any 
of the methods described in sections $1 - 3. First, to prevent excessive diffusion errors in the ale 
remap cycle, the mesh motion is rescaled in amplitude to small relative changes in cell dimensions 
as 620 -+ e620 with 

(4.70) 

where AL is a characteristic length scale, CL and Cv are constants with values less than unity con- 
straining the relative length and volume changes respectively, and bx,in is a minimum displacement 
threshold below which any computed mesh motion is neglected. 

Second, the displacement vector may be rescaled to the fluid velocity to prevent unnecessary 
mesh movement in domains which have not become dynamically active. This is achieved by setting 

(4.71) 

where kl is an arbitrary scale constant, At the physical Lagrange cycle timestep, and G j  the fluid 
velocity. 

Finally, additional node and zone coupling can be achieved by applying local filters and effec- 
tively generating smoother meshes by extending the Laplacian stencil to larger domains of influence, 
and suppressing further any potential hourglassing modes. For example, the displacement vector 
may be modified to the form 

820 -+ 620 + k2(bZ0,a,g - S20), (4.72) 

where k2 is a constant less than or equal to unity. b20,avg is an extended average nodal mesh velocity 
computed either as a simple average of all node velocities directly connected to Zo by cell edges, 
or as a zone-centered extrapolated mean field. In the latter case, a zone-centered velocity di?o,z is 
computed in all zones attached t o  node 0 by averaging it's nearest nodal velocities; node-centered 
gradients of each of the zone-centered field components e ~ b x &  are constructed and averaged back 
to the zone centers; 6 2 0 , ~ ~ ~  is finally defined by extrapolating the nearest zone-centered velocities 
to node 0 using a first order Taylor's series to the form 

N0,z is the total number of zones attached to node 0, NN,Z the total number of nodes associated 
with zone 2, and xb - are the vector components of the distances between node 0 and nearest 
neighbor zone centers identified by the index m z .  
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